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Scaling of damping induced by bubbly flow across tubes
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Abstract

The damping of tubes subjected to two-phase air–water bubbly cross-flow is investigated with the use of an

experimental database from several authors. A new definition of damping in stagnant flow is proposed using an

extrapolation of the measured values at low dimensionless flow velocities. This approach yields values of damping

substantially lower than those currently defined in the literature. They are found to vary continuously with void

fraction, within the bubbly flow regime. These data are used to compare several models of the equivalent viscosity of a

two-phase mixture. The effect of the flow velocity is then analysed up to fluidelastic instability. It is observed that, using

scaling factors based on the characteristics of the liquid phase, fluidelastic effects of bubbly flows are closely related to

those known in single-phase flows.

r 2003 Elsevier Science Ltd. All rights reserved.

1. Introduction

Many industrial components operate with two-phase flows across tube bundles, such as heat exchangers and nuclear

steam generators. Better performance often requires higher flow velocities, while reduced structural support is desirable

to minimize manufacturing costs. High flow velocities may lead to severe flow-induced vibrations and fatigue or

fretting-wear. Flow-induced vibrations in tube bundles are generally considered as the consequence of two distinct

mechanisms (Chen, 1987) namely random buffeting forces caused by fluctuations inherent to the flow and fluidelastic

forces which depend on the motion of the vibrating tubes. Through their influence on damping, fluidelastic forces are

the cause of instabilities. In order to avoid excessive flow-induced vibrations, it is essential to acquire a better knowledge

of the behaviour of damping in tube bundles subjected to two-phase cross-flow, for two reasons: (i) in predictive

analysis, the calculation of the response of a tube subjected to fluid forces requires knowledge of damping in flow

conditions, (ii) criteria for fluidelastic instability are generally formulated in terms of a reduced flow velocity and a

dimensionless mass-damping parameter (Blevins, 1990) which requires a value of damping in stagnant fluid, even for

two-phase mixtures. More fundamentally, a recent paper (Pettigrew and Knowles, 1997) concluded that ‘‘the true

nature of energy dissipation mechanisms in two-phase mixtures is still unknown’’.

Two-phase air–water mixtures are considered in this paper. Though this mixture is not necessarily representative of

the steam–water mixture that flows in heat exchangers, it is commonly used to investigate fluid–structure effects in two-

phase flows. Following most flow-induced vibration analysis (Blevins, 1990; Chen, 1991; Pettigrew and Taylor, 1994), it

is convenient here to use the homogeneous model where both liquid and gas phases are assumed to have the same

velocity. More refined models will be discussed further. When considering test sections such as in Fig. 1, the
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homogeneous void fraction is defined as the ratio of the gas flow rate to the total flow rate of the two-phase mixture,

namely

a ¼
Qg

Ql þ Qg

; ð1Þ

where Qg and Ql are the volume flow rates of gas and liquid. The mixture density r is given by

r ¼ arg þ ð1� aÞrl ð2Þ

and the upstream and gap velocities, VN and V ; respectively, are defined as

VN ¼
rgQg þ rlQl

rA
; V ¼ VN

P

P � D
; ð3Þ

where A is the test section area, D is the diameter of the tube and P is the pitch of the array.

The total damping x of a tube in fluid may be divided into a structural component, xs; and a fluid component, xf ; also
called added damping (Carlucci and Brown, 1983)

x ¼ xs þ xf : ð4Þ

The added damping in quiescent fluid, which we shall refer to as ‘‘quiescent fluid damping’’, xf
o; may be easily defined

for single-phase fluids. It is the part of the system damping that originates from the effects of the viscosity of the

surrounding nonmoving fluid. It may be experimentally obtained from the response of a tube to a known excitation or

estimated from analytical considerations for a vibrating tube in a confined viscous fluid. When the Stokes number,

St ¼ fD2=n; is large enough (StX2100), the solution of Stokes equations yields (Rogers et al., 1984)

xf
o ¼ xv ¼

pffiffiffi
8

p rD2

m

� �
2

p St

� �1=2
1þ g3

ð1� g2Þ2
; ð5Þ

where g ¼ D=De is the ratio between the diameter of the tube D and the diameter of the flow boundary De; m is the total

mass per unit length including the hydrodynamic mass, f is the frequency of the tube motion and n is the kinematic

viscosity. Comparisons with experimental results show good agreement (Pettigrew et al., 1986).

Experimentally, it is not feasible to maintain a stagnant liquid–gas mixture, the densities of each phase being

different. The concept of quiescent fluid damping was nevertheless extended for two-phase mixtures, using experimental

data at low flow velocities (Carlucci and Brown, 1983). Experimental damping in two-phase air–water was observed to

be much higher than the calculated damping in air or in water flow, and even in two-phase flow using the equivalent

two-phase viscosity

n ¼
nl

1þ aððnl=ngÞ � 1Þ
; ð6Þ

Fig. 1. Main characteristics of a tube bundle in a test section.
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proposed by McAdams et al. (1942). Therefore, it has been assumed in the literature (Carlucci and Brown, 1983) that a

mechanism of damping specific to two-phase mixtures exists in addition to viscosity so that the total fluid damping in

almost quiescent fluid should read

xf
o ¼ xv þ xtp: ð7Þ

Using large sets of experimental data, Pettigrew and Taylor (1997) proposed a lower bound of xtp; convenient for design
purposes,

xtp ¼ 4f ðaÞ
rlD

2

m

� �
1þ g3

ð1� g2Þ2
; ð8Þ

where the void fraction function f ðaÞ is taken as 1.0 for a from 0:4 to 0:7; a=0:4 for ao0:4; and 1:0� ða� 0:7Þ=0:3 for

a > 0:7:
In this paper, we propose an alternative approach for the definition of quiescent fluid damping in two-phase bubbly

mixtures and of its behaviour with flow velocity. In Section 2, we describe the experimental database used throughout

the paper. Damping at low reduced velocities is considered in Section 3 and the behaviour with flow velocity in Section

4. The physical meaning of the results and their use are discussed in Section 5.

2. Experimental database

Several experimental results on flow-induced vibrations in two-phase flow may be found in the literature, see for

instance a review in de Langre and Villard (1998). Most of these tests were not primarily aimed at the measurement of

damping. We shall therefore use for our purpose specific tests in air–water, from Taylor et al. (1988) and Taylor (1994),

Axisa et al. (1989) and a new experimental programme described further in Baj (1998) and Baj and de Langre (1999).

The general characteristics of these tests are given in Table 1.

Taylor et al. (1988) measured damping of a cantilever tube in a tube row. Detailed data from this test programme

may be found in Taylor (1994) and the retained values, in the range of void fraction ½20%; 80%�; are given in Table 2.

As described in Axisa et al. (1989) tests in two-phase air–water mixtures have been conducted on a flexible tube

inserted in a rigid bundle. The central tube is mounted on a flexible plate which allows vibrations in the lift direction

only. Here, we consider tests in the range of void fraction ½20%; 80%�: A result from a test in water (a ¼ 0) on the same

Table 1

General characteristics of tube bundles

Reference Bundle D P=D fair xs

(m) (Hz) %

Taylor (1994) 0.03 3 128 0:2

Axisa et al. (1989) 0.03 1.5 33:1 0:15

Baj and de Langre (1999) 0.0133 N 33 0:2
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system is also considered from Hadj-Sadok et al. (1995). The test results are given in Table 3. Data points with strong

vortex shedding effects have been excluded.

Finally, a new set of tests is considered, which have been carried out on a single cantilever tube subjected to air–water

cross-flow (Baj and de Langre, 1999). The tube is horizontally mounted and subjected to vertically upward flow, see

Fig. 2. The test section has a rectangular cross-section of 70� 100 mm2: The tube is mounted on a flexible plate which

allows vibration in the lift direction only. The data may be found in Table 4.

All these test data may now be analysed in terms of flow regimes according to the pattern map developed by Ulbrich

and Mewes (1994) for flow across tube bundles. Fig. 3 shows that the entire set of experimental data considered here

falls into the domain of bubbly flow.

3. Damping in quiescent fluid

In this section, we consider how the concept of quiescent fluid damping in bubbly flow may be defined from the set of

experimental data. We still assume that the measured total damping ratio x is composed of a structural component xs

and a fluid component xf as in single-phase flow, but the latter is now considered as a global entity in contrast with

previous approaches.

In order to compare results from one configuration to another, the fluid damping xf needs to be related to parameters

such as the tube mass per unit length, mt; the hydrodynamic mass per unit length, mh; the confinement and the diameter

of the tube. Carlucci (1980) observed that damping varies with the ratio of hydrodynamic mass over the total cylinder

mass, m ¼ mt þ mh: The ratio rlD
2=m was used in the normalization of the two-phase damping by Pettigrew and

Taylor (1994). In contrast, we consider here the ratio rD2=m to account for the effective density of the surrounding

mixture, using r instead of rl : In the case of tube bundles or tube rows, confinement needs also to be taken into account.

Chen et al. (1976) showed that confinement affects, respectively, the hydrodynamic mass mh ¼ bprD2=4 and the fluid

Table 2

Tests by Taylor (1994)

a V f x
(%) ðm s�1Þ (Hz) ð%Þ

20 0.94 104 3.1

20 1.87 106 4.5

25 1.00 106 3.5

25 2.00 107 4.4

25 4.00 109 5.7

30 0.53 106 2.9

35 0.58 106 3.1

35 1.15 108 3.1

35 2.31 109 4.2

35 4.61 110 4.4

50 0.75 109 2.6

50 1.50 110 2.8

50 3.00 112 3.6

50 5.99 112 3.9

70 9.97 112 4.0

75 1.50 113 2.7

75 3.00 114 2.1

75 5.98 114 3.0

80 1.87 114 2.1

80 3.73 115 2.1

80 7.47 114 2.7
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damping with multiplicative coefficients b and d given by

b ¼
1þ g2

1� g2
; d ¼

1þ g3

ð1� g2Þ2
ð9Þ

with g ¼ D=De where De ¼ ð1:07þ 0:56P=DÞP for square bundles where P is the pitch of the bundle, see Rogers et al.

(1984). We also assume that the dependence of fluid damping in two-phase flow with the tube diameter is linear as in

single-phase flow, Eq. (5), so that the fluid damping ratio xf should be referred to a reference diameter, Dref ; chosen
arbitrarily. Here, we use Dref ¼ 30 mm; see also de Langre and Villard (1998).

From these considerations, we may define a normalized fluid damping ratio as

xf
n ¼

xf

ðrD2=mÞðDref=DÞd
: ð10Þ

This differs from the normalization by Pettigrew and Taylor (1997) by the use of the mixture density r instead of the

liquid density rl and by a diameter referencing through Dref : Considering now tests at low reduced velocities (Taylor,

1994; Baj and de Langre, 1999), the dependence of the normalized fluid damping xf
n with the reduced velocity VR is

shown in Fig. 4, for void fraction ranges ½20%; 30%� to ½70%; 80%�: For each range of void fraction, the normalized fluid

damping is found to increase with the reduced flow velocity. Note here that low reduced velocities VR ¼ V=fD are

obtained either by low-velocity tests (Baj and de Langre, 1999) or high-frequency tests (Taylor, 1994). Despite the fact

that quiescent fluid does not exist for mixtures such as air–water, a value of quiescent fluid damping ðxf
nÞo may be easily

defined by extrapolating the data to VR ¼ 0 in each range of void fraction, Fig. 4. A test in quiescent water from Axisa

et al. (1989) is also considered to obtain some data at a ¼ 0: It is remarkable that the value of the normalized fluid

Table 3

Tests by Axisa et al. (1989)

a V f x a V f x
(%) ðm=sÞ (Hz) ð%Þ (%) ðm=sÞ (Hz) ð%Þ

0 0.00 18.2 0.60 45 1.36 22.1 10.2

0 0.28 18.1 0.73 45 2.73 22.2 11.1

0 0.56 18.3 0.99 45 3.18 22.3 9.53

0 0.66 18.3 1.07 45 3.64 22.4 7.69

0 0.69 18.2 1.33 45 4.10 22.8 6.10

0 0.83 18.1 1.49 45 4.55 22.9 1.77

0 0.90 18.0 1.87 45 5.00 23.2 0.93

0 1.39 18.0 3.21

0 1.52 17.3 2.71 55 3.89 24.9 11.7

0 1.66 17.1 1.53 55 4.44 24.9 10.7

0 1.86 16.9 0.57 55 5.00 24.9 6.23

0 1.94 17.7 0.50 55 5.56 25.1 5.23

55 6.10 25.5 1.63

25 1.00 20.2 8.80 55 6.67 25.6 0.35

25 1.67 19.7 10.5

25 2.00 19.6 9.29 65 3.57 26.5 8.73

25 2.33 19.3 6.41 65 4.29 26.8 11.0

25 2.47 19.2 5.43 65 5.00 27.2 10.5

25 2.67 19.1 2.53 65 5.71 27.2 12.4

65 6.43 26.9 7.92

35 1.15 21.0 10.7 65 7.14 26.2 3.52

35 2.30 20.6 9.80 65 7.86 27.4 0.90

35 2.69 20.0 8.10

35 2.85 20.5 7.10 75 5.00 28.5 10.8

35 3.08 20.3 5.74 75 6.00 28.6 10.9

35 3.46 20.5 2.57 75 9.00 26.9 7.56

35 3.65 20.7 0.85 75 9.50 26.3 4.98

35 3.85 20.6 0.33 75 10.0 27.4 2.74

75 12.0 30.7 0.92
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damping in quiescent water seems to agree well with that obtained by extrapolating the air–water data to zero void

fraction, Fig. 5.

If we now assume that the extrapolated quiescent fluid damping in two-phase mixtures is exclusively due to some

viscous phenomenon, as in single-phase fluid, it is possible to define an apparent vibrational viscosity using Eq. (5) and

the results of Fig. 5. The behaviour of this apparent dynamic viscosity with void fraction is plotted in Fig. 6, in

comparison with other commonly used models of viscosity by McAdams, Dukler or Cicchitti, see Collier (1981), given

in Eqs. (6), (11) and (12), respectively,

m ¼ amg þ ð1� aÞml ; ð11Þ

Fig. 2. Experimental apparatus (Baj and de Langre, 1999).

Table 4

Tests by Baj and de Langre (1999)

a V f x
(%) ðm=sÞ (Hz) ð%Þ

55 0.19 28.8 5.6

55 0.31 29.1 6.1

55 0.39 29.1 6.1

55 0.51 29.3 5.9

65 0.19 29.1 5.0

65 0.31 29.4 5.6

65 0.39 29.5 6.7

65 0.59 29.6 6.0

75 0.20 29.2 4.5

75 0.39 29.6 4.7

75 0.60 29.9 5.6

75 0.72 30.1 5.5
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rm ¼ argmg þ ð1� aÞrlml ; ð12Þ

using mg ¼ 1:5 10�5 m2 s�1 in air and ml ¼ 10�3 m2 s�1 in water.

There is a clear difference between our measured vibrational viscosity and that predicted by more classical models,

which were designed to simulate other viscous effects. Note also the difference between these earlier models. This

difference is precisely the reason why Pettigrew and Taylor (1994, 1997) introduced an additional two-phase damping

coefficient to obtain adequate values of predicted damping.

In the case of vertical bubbly flow parallel to vibrating tubes, a similar behaviour of damping with void fraction has

been observed by Hara (1988). This effect was satisfactorily modelled by considering that, in bubbly flow, global

dissipation is actually increased by the viscous interaction between vibrating columns of bubbles and the surrounding

liquid (Hara, 1993). In other terms, the viscous force acting on the tube was assumed to be multiplied by a factor of

(1þ Sb=S), where Sb is some equivalent surface of the bubble columns and S is that of the tube.

This model may be qualitatively adapted to the present case of bubbly flow across a tube by simply considering

bubbles around the tube instead of columns of bubbles. Let us consider a section of fluid in the plane perpendicular to

the tube. When flow confinement is small, as in the experiments of Baj and of Taylor, the area of fluid influenced by the

tube motion is of the order of the tube cross-section, namely ST ¼ pD2=4: Along a length h of the tube, the volume of

bubbles is therefore

Vb ¼ aST h: ð13Þ

It may also be written as

Vb ¼ Nb

4

3
p

Db

2

� �3

; ð14Þ

where Nb is the number of bubbles and Db is their diameter, supposed to be uniform in our model. A simple model of

bubble size (de Langre and Villard, 1998) is Db ¼ 0:1D=
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
: The interface between the liquid phase and the bubbles

has a total area of

Sb ¼ Nb4p
Db

2

� �2

; ð15Þ

Fig. 3. Test data fall in the bubbly region of the pattern map by Ulbrich and Mewes (1994): W; Taylor et al. (1988); &; Axisa et al.

(1989); J; Baj and de Langre (1999).

F. Baj, E. de Langre / Journal of Fluids and Structures 17 (2003) 351–364 357



while that of the tube is

S ¼ pDh: ð16Þ

Combining the foregoing equations yields

Sb

S
¼ 15a

ffiffiffiffiffiffiffiffiffiffiffi
1� a

p
: ð17Þ

Fig. 4. Normalized fluid damping at low reduced velocity for several ranges of void fraction a: (a) 20–30%; (b) 30–40%; (c) 40–50%;

(d) 50–60%; (e) 60–70%; (f) 70–80%. W; Taylor et al. (1988); J; Baj and de Langre (1999); ð:::::Þ; quadratic interpolation.
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The ratio of the average bubble diameter to the tube diameter is therefore fixed in our model. Following Hara (1988),

we now assume that the damping increases with void fraction as ð1þ Sb=SÞ: As the viscous damping varies as n1=2 in

terms of viscosity, Eq. (5), this results in an apparent two-phase viscosity of

n ¼ nl 1þ
Sb

S

� �2

: ð18Þ

Using the approximation rCð1� aÞrl ; we have finally

m ¼ mlð1� aÞ 1þ 15a
ffiffiffiffiffiffiffiffiffiffiffi
1� a

p� �2

: ð19Þ

This equation, when plotted in Fig. 6, is found to give a good qualitative approximation of the effect of void fraction on

the apparent viscosity of a bubbly mixture, in terms of vibration damping.

Fig. 5. Continuity of the normalized quiescent fluid damping with void fraction ranges: 	; water; —, air–water.

Fig. 6. Equivalent dynamic viscosity m of a two-phase mixture. Experimental data derived from damping: 	; water; —, air–water.

Models: ð::::Þ; McAdams, Eq. (6); (- - -), Dukler, Eq. (11); ð�:�Þ; Cicchitti, Eq. (12); (—), Eq. (19) derived from the model of Hara

(1988).
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4. Effect of the flow velocity on damping

In this section, we now consider the effect of the velocity of the mixture on damping. This effect is studied here on the

same normalized damping ratio, Eq. (10), assuming that the confinement effect, Eq. (9), does not depend on the flow

velocity. As in Section 3, several ranges of void fraction are considered. The behaviour of normalized fluid damping

with the reduced flow velocity is shown in Fig. 7, considering all tests from the database.

Fig. 7. Normalized fluid damping versus reduced velocity for several range of void fraction a: (a) 20–30%; (b) 30–40%; (c) 40–50%;

(d) 50–60%; (e) 60–70%; (f) 70–80%.W; Taylor et al. (1988); &; Axisa et al. (1989); J; Baj and de Langre (1999); ð� � �Þ; quadratic
interpolation of the data.
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It appears that the reduced velocity does affect damping on the whole range of its values, typically from VR ¼ 0

to 10. Whereas two-phase fluid damping is often considered to be constant for low velocities (Pettigrew et al., 1989),

it can be seen in Fig. 7 that damping significantly increases at low reduced velocities as noted in the preceding

section. The maximum value of normalized fluid damping is obtained between the third and the half of the

maximum velocity considered for each void fraction. This maximum value is typically twice the extrapolated value at

zero velocity.

A simple quadratic interpolation of the data emphasizes similarities of the behaviour for all ranges of void

fraction. In comparison, Fig. 8 shows the behaviour of fluid damping in water flow (Axisa et al., 1989). Clearly, a

similarity exists with the two-phase data of Fig. 7, the damping increasing then decreasing with increasing reduced

velocity.

Let us now analyse the fluidelastic effects alone by removing the damping in quiescent fluid as defined in Section 3,

Fig. 5, from the total fluid damping, thus defining a fluidelastic damping coefficient

xfe ¼ xf � xf
o: ð20Þ

For the sake of clarity, only data points from Axisa et al. (1989) in Figs. 7 and 8 are now plotted in terms of this

fluidelastic damping xfe versus reduced velocity VR; Fig. 9.
The self-similarity of these behaviours, as noted above, leads us to propose new scaling factors on both axes, using

physical arguments. Fluidelastic effects are by nature caused by the reaction of the flowing fluid to the tube motion. In

the particular case of air–water mixtures, because of the mass ratio between the phases, most of the momentum

originates in the motion of the liquid. We therefore propose to use for the scaling of fluidelastic effects new quantities

referring to the liquid phase only. The proposed scaling velocity is the superficial liquid velocity Jl as in Nakamura et al.

(1995) or Inada et al. (1996), Jl ¼ ð1� aÞV ; so that the reduced superficial liquid velocity is

ðJlÞR ¼ ð1� aÞ
V

fD
: ð21Þ

Similarly, the fluidelastic part of damping is now referred to the liquid density rl instead of r and reads

xfe
n ¼

xfe

ðrlD
2=mÞðDref=DÞd

: ð22Þ

Using these variables, data points from all tests of the database are plotted in Fig. 10. A first result is that all two-phase

flow data follow the same behaviour, regardless of void fraction. This shows that the scaling factors defined by Eqs. (21)

and (22) have some relevance. A second result is that this common behaviour is qualitatively similar to that of the

single-phase flow test, suggesting a similar fluidelastic mechanism.

Fig. 8. Normalized damping in water: 	; Axisa et al. (1989).
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5. Discussion

In the preceding sections, we have defined a dimensionless damping in quiescent fluid, Eq. (10), and a dimensionless

fluidelastic damping dependent on the reduced superficial liquid velocity, Eqs. (21) and (22). The mixture characteristics

(r) have been used in the first scaling while the liquid characteristics (rl ; Jl) have been used in the second. These scalings

differ from those of other authors (Pettigrew and Taylor, 1994; Inada et al., 1996). The first one allows a dependence of

damping with the actual average mass of the medium surrounding the tube and, in general, is thought to be more

adequate to the comparison of mixtures such as air–water and steam–water. The second one is more related to the

dynamics of the moving medium, where momentum is dominated by the effect of the liquid. More precisely, Fig. 10

Fig. 9. Fluidelastic effects on damping: 	; water (Axisa et al., 1989); &; air–water (Axisa et al., 1989).

Fig. 10. Scaling of fluidelastic effects in two-phase flow: 	; water (Axisa et al., 1989); J; air–water (Baj and de Langre, 1999); W;
air–water (Taylor et al., 1988); &; air–water (Axisa et al., 1989).
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suggests that the superficial liquid velocity would be the relevant quantity to define the convection delay that causes

instability, according to several analytical models (Price, 1995).

More refined descriptions exist for two-phase mixtures, such as drift-flux models or slip models. These may be

used to redefine void fractions and liquid or gas velocities as done by several authors (Inada et al., 1996; Feenstra et al.,

1995). The use of a drift-flux model to reanalyse our data showed only a slight improvement of the collapse of data

points.

It is quite natural to assume that the effects of two-phase mixtures on tubes are qualitatively different from those of

single phase fluids. Indeed, for the random buffeting excitation exerted by such mixtures, many authors pointed out

specific excitation mechanisms probably due to the variations in term of phase at a given location (Taylor et al., 1996;

Nakamura et al., 1995; de Langre and Villard, 1998). Conversely, the results of the present paper seem to indicate that

the mechanisms controlling damping effects in two-phase bubbly flows are similar to those known in single phase. Still

fluid damping, when defined by an extrapolation at zero velocity, is found to be in striking continuity from water to air–

water bubbly mixtures. Fluidelastic effects on damping, when referred to the superficial liquid velocity, may be closely

compared with those known in single phase flow.

6. Conclusion

The knowledge of the behaviour of modal characteristics, and particularly damping, of a tube inserted in a bundle

subjected to two-phase cross-flow is required for predictive calculation, especially for the prediction of the onset of

fluidelastic instability. An analysis of damping in quiescent fluid and the fluidelastic behaviour of damping have been

carried out using several series of water and bubbly air–water tests which cover a range of void fraction from 0% to

80%: The main conclusions are the following.

(a) As stagnant fluid does not exist with two-phase mixtures such as air–water, quiescent fluid damping needs to be

defined by extrapolation towards zero of the damping measured at low reduced velocities.

(b) As damping increases with reduced velocity at low reduced velocity, the value of quiescent fluid damping thus

obtained is generally significantly lower than that currently used considering values at half the critical velocity for

instability.

(c) Assuming that the damping in quiescent fluid as defined here is due to some viscous mechanism, it is shown that

the resulting apparent two-phase vibrational viscosity is far higher than that obtained from classical models. It may be

approximated by adapting the model of Hara (1988).

(d) The study of the behaviour of normalized fluid damping shows that fluidelastic phenomena occur over the whole

range of reduced velocity, from the lowest velocities up to fluidelastic instability. In fact, normalized fluid damping first

increases with reduced velocity then decreases towards very low values which are characteristic of the fluidelastic

instability phenomenon.

(e) Using adequate scaling factors related to the characteristics of the liquid phase only, it is observed that fluidelastic

effects are qualitatively similar in water and in air–water bubbly flow.

This analysis shows that damping in bubbly mixtures follows the same laws as in single-phase flows, when

considering scale factors derived from physical considerations. This suggests that, in contrast with random buffeting

effects, there is no mechanism of damping unique to two-phase bubbly flow across tubes.
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